Yazar "Turhan, Mehmet Fatih" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Gamma radiation shielding performance of CuxAg(1-x)-yalloys: Experimental, theoretical and simulation results(Pergamon-Elsevier Science Ltd, 2022) Turhan, Mehmet Fatih; Akman, Ferdi; Taser, Ahmet; Dilsiz, Kamuran; Ogul, Hasan; Kacal, Mustafa Recep; Agar, OsmanDifferent types of photon shielding parameters such as total mass attenuation coefficient (mu/p), linear attenuation coefficients (mu), half value layers (HVL), mean free paths (MFP), effective atomic numbers (Z(Eff)), energy absorption build-up factors (EABF), exposure build-up factors (EBF) and kerma relative to air were investigated for the fabricated Cu-Ag based alloys. The considered parameters were measured through gamma spectrometer equipped with HPGe detector in order to obtain the experimental attenuation coefficients and other related parameters at various photon energy in the energy range 59.5-1332.5 keV. The measured mu/rho values were confirmed with WinXCOM database results. FLUKA and GEANT4 simulation codes were used to examine the compatibility of the experimental and WinXCOM database results with these simulation codes. The exposure buildup factors of the alloy samples were estimated with help of Geometric Progression fitting formula over photon energy 0.015-15 MeV up to 40 mfp penetration depth. The results revealed that the exhibited effectiveness of Cu0.2Ag0.8 alloys against high energetic photon radiations had a good performance than that of alternative absorbers such conventional concretes, glasses and some alloys. The results of the present survey can be quite useful for possible applications of such materials, especially in nuclear laboratory and reactor core design for preference of effective photon shielding materials.Öğe Interactions between X-/gamma rays and alloys used in dental braces: A study on theory and simulations(Pergamon-Elsevier Science Ltd, 2024) Akman, Ferdi; Ogul, Hasan; Turhan, Mehmet Fatih; Agrili, Cansu SeymaIn the field of dentistry, the utilization of dental X-rays plays a pivotal role in ensuring accurate diagnoses for various dental conditions. A crucial aspect of this practice involves understanding how these X-ray emissions interact with dental braces. In the presented study, the details of how X-rays and gamma rays interact with different materials used in dental braces, namely stainless steel, nitinol, elgiloy, and beta-titanium alloys, were examined. This investigation was carried out through a combination of advanced simulation codes such as FLUKA and GEANT4, alongside theoretical calculations using the WinXCOM approach. A comprehensive analysis was conducted at fourteen distinct energy levels, ranging from 20 to 150 keV with 10 keV increments. The primary focus of this study revolves around quantifying the shielding characteristics of gamma and X rays as they traverse through these dental brace materials. To achieve this, some gamma/X-ray shielding parameters, buildup-factors, and kerma relative to air were meticulously simulated and calculated. Additionally, the energy deposits within these materials and the subsequent generation of secondary radiations are thoroughly explored. Significantly, these results highlight that elgiloy alloy demonstrates the highest attenuation of X-ray and gamma ray intensities compared to the other considered materials. This comprehensive study thus offers valuable in-sights into the behavior of dental braces when subjected to ionizing radiation, with potential implications for patient safety and diagnostic accuracy in dental radiology.Öğe Production and evaluation of the polyester composites containing pyrite and niobium diboride for radiation protection(Pergamon-Elsevier Science Ltd, 2025) Akman, Ferdi; Turhan, Mehmet Fatih; Ogul, Hasan; Tursucu, Ahmet; Erdogan, Taha; Kacal, Mustafa Recep; Polat, HasanThe presented study focused on investigating the radiation shielding properties of polyester/pyrite/niobium diboride (FeSNbB) composites. Various gamma-ray shielding parameters were evaluated with help of a HPGe detector system. Theoretical and simulation results are further evaluated by WinXCOM, GEANT4 and FLUKA codes, and the obtained results are compared with experimental values in the energy region 59.5 keV-1332.5 keV. The prepared samples are additionally evaluated using kerma relative to air values and Exposure build-up factors. Then, for the evaluation of neutron radiation shielding, effective removal cross sections for fast neutrons were determined for FeSNbB composites. Electron attenuation efficiency (AE%) for the produced composites was assessed across the energy spectrum of 4 MeV-18 MeV, utilizing experimental data from a Linac machine and theoretical predictions from Eclipse TPS. The results were found to be compatible with each other. FeSNbB50 has the best shielding properties among the studied composites.