Yazar "Topuz, Vedat" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Designing a fuzzy logic controller with particle swarm optimisation algorithm(Inst Engineering Tech-Iet, 2018) Lokman, Gurcan; Topuz, Vedat; Baba, Ahmet FevziIn this study, we designed a trajectory-tracking fuzzy logic controller (TTFLC) for the TRIGA Mark-II Training and Research Reactor, which is located at the Istanbul Technical University. The designed fuzzy logic controller (FLC) is based on the zero-order Sugeno method. The parameters of the FLC membership functions and the action weights of the 15 rules in the rule base are optimised by using the particle swarm optimisation (PSO) algorithm. The objective of this study is to control the TRIGA Mark-II reactor using the designed PSO-tuning TTFLC in a simulator. We used a simulation code from the literature called 'YAVCAN' for studying the non-linear behaviour of the core of the TRIGA Mark-II reactor. To select the best parameters of the PSO algorithm for this system, we conducted some experiments. After selecting the best PSO parameters, the algorithm was started a number of times to determine the optimal parameters of the designed FLC and the optimal parameters of the controller. After determining these parameters, the performance of the designed controller was tested for various initial and desired power levels and under conditions of disturbance. The simulation results showed that the proposed controller could control the reactor power successfully, and it could ensure that the reactor tracks the desired trajectory power within the acceptable error tolerance. Therefore, the PSO algorithm is suitable for finding the optimal parameters of the FLC.Öğe Hyperspectral Image Classification Based on Multilayer Perceptron Trained with Eigenvalue Decay(Taylor & Francis Inc, 2020) Lokman, Gurcan; Celik, Hasan Huseyin; Topuz, VedatHyperspectral Images (HSI) require sufficient labeled samples and a complex classifier to identify an area. Support Vector Machine (SVM) is one of the most competent algorithms in this field. Neural Networks (NN) is another approach used for classification problems, and both have been widely proposed in the literature. The Convolutional Neural Network (CNN) method has also received significant attention in the deep learning field recently. Nevertheless, during NN training, the overfitting problem may cause continuous dragging of the algorithm toward larger error. In this case, a regularization technique is needed to constitute the most useful decision boundary. The Eigenvalue Decay method is one of the regularization techniques that may be applied for HSI. This study investigates the performance of Multilayer Perceptron trained with an Eigenvalue Decay (MLP-ED) algorithm for HSI classification. The SVM, CNN with Pixel-Pair and CNN-Ensemble methods are used as comparison algorithms for MLP-ED performance assessment. All methods were tested with 3 different high-resolution HSI datasets. While SVM is one of the classic classifiers, and the 2 new CNN algorithms show high performance, the proposed MLP-ED method has more computational efficiency and achieves higher success than the others do.