Yazar "Tomaz, Italo, V" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Improvement of machinability of Ti and its alloys using cooling-lubrication techniques: a review and future prospect(Elsevier, 2021) Pimenov, Danil Yu; Mia, Mozammel; Gupta, Munish K.; Machado, Alisson R.; Tomaz, Italo, V; Sarikaya, Murat; Wojciechowski, SzymonProducts made of titanium and its alloys are widely used in modern areas like the mechanical engineering, instrument making, aerospace and medical sector. High strength and low thermal conductivity are the causes of difficulties with the machinability of these alloys. It is important to find ways to increase machinability by cutting titanium alloys. One way to implement this is to apply various methods of cooling on workpieces of titanium alloys and on cutting tools during machining. In this review article, an extensive analysis of the literature on such cooling techniques as dry, conventional cooling system, minimum quantity of lubricant (MQL), minimum quantity cooling lubrication (MQCL), cryogenic lubrication, and high-pressure cooling (HPC) is performed. The following groups of Ti alloys are considered: high-strength structural and high-temperature Ti alloys, intermetallic compounds, pure titanium, as well as composites CFRPs/Ti alloys. For the processes of turning, milling, drilling, and grinding, etc. it is shown how the type of cooling affects the surface integrity include surface roughness, tool wear, tool life, temperature, cutting forces, environmental aspects, etc. The main advantages, disadvantages and prospects of different cooling methods are also shown. The problems and future trends of these methods for the machining of Ti and its alloys are indicated. (c) 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Products made of titanium and its alloys are widely used in modern areas like the mechanical engineering, instrument making, aerospace and medical sector. High strength and low thermal conductivity are the causes of difficulties with the machinability of these alloys. It is important to find ways to increase machinability by cutting titanium alloys. One way to implement this is to apply various methods of cooling on workpieces of titanium alloys and on cutting tools during machining. In this review article, an extensive analysis ofÖğe Influence of MoS2 based nanofluid-MQL on tribological and machining characteristics in turning of AA 2024 T3 aluminum alloy(Elsevier, 2021) Yucel, Aysegul; Yildirim, Cagri Vakkas; Sarikaya, Murat; Sirin, Senol; Kivak, Turgay; Gupta, Munish Kumar; Tomaz, Italo, VAluminum (Al) alloys are of particular importance to the aerospace industry owing to the combination of characteristics including strength, ductility, toughness, fatigue life and oxidation resistance as a light metal. This is the case of AA 2024 T3 Al alloy. In particular, machining of these alloys has similar importance for productivity and part quality. Recently, the use of nanofluids, which have various advantages in terms of both cooling ability and tribological aspects, has become popular for the efficient machining of such alloys. In this context, guiding data are needed that enable industry and researchers to machine these types of alloys with high efficiency. Taking these into account, in this study, AA 2024 T3 Al alloy was machined and various machinability indicators such as surface roughness, surface topography, maximum temperature and dominant tool wear mechanism under different cooling/lubrication strategies i.e., dry cutting, base fluid minimum quantity lubrication (MQL) and mineral oil based MoS2 nanofluid MQL (NFMQL) were investigated. As a results, significant improvements have been achieved in surface roughness, surface topography, and maximum temperature with help of NFMQL application. The intensive built-up edge (BUE) and built-up layer (BUL) formations are produced on the cutting tool when machining AA 2024 T3 Al alloy under dry cutting. On the other hand, BUE formation has been significantly eliminated thanks to NFMQL. Moreover, a less damaged cutting edge was obtained when machining Al alloy under NFMQL compared to both dry cutting and MQL environments. (c) 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).