Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Tomaz, Italo" seçeneğine göre listele

Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
  • [ X ]
    Öğe
    A state-of-the-art review on tool wear and surface integrity characteristics in machining of superalloys
    (Elsevier, 2021) Sarikaya, Murat; Gupta, Munish Kumar; Tomaz, Italo; Pimenov, Danil Yu; Kuntoglu, Mustafa; Khanna, Navneet; Yildirim, Cagri Vakkas
    Today, superalloys (also known as hard-to-cut materials) such as nickel, titanium and cobalt based cover a wide range of areas in engineering applications. At the same time, challenging material properties namely high strength and low thermal conductivity cause low quality in terms of cutting tool life and surface integrity of the machined part. It is important to improve the machinability of this type of materials by applying various methods in the perspective of sustainability. Therefore, current study presents surface integrity, tool wear characteristics and initiatives to improve them during the machining of superalloys. In this manner, it is outlined the surface integrity characteristics containing surface defects, surface roughness, microstructure alterations and mechanical properties. Also, tool wear mechanisms for example abrasive, adhesive, oxidation, diffusion and plastic deformation are investigated in the light of literature review. Finally, possible improvement options for tool wear and surface integrity depend on machining parameters, tool modifications, cooling methods and trade-off strategies are highlighted. The paper can be a guide for the researchers and manufacturers in the area of sustainable machining of hard-to-cut materials as explaining the latest trends and requirements. (C) 2021 CIRP.
  • [ X ]
    Öğe
    Cooling techniques to improve the machinability and sustainability of light-weight alloys: A state-of-the-art review
    (Elsevier Sci Ltd, 2021) Sarikaya, Murat; Gupta, Munish Kumar; Tomaz, Italo; Danish, Mohd; Mia, Mozammel; Rubaiee, Saeed; Jamil, Mohd
    A well-acknowledged role of cutting fluids in any cutting operation has made them inevitable to utilize regarding the provision of adequate cooling and lubrication. Mineral-based cutting fluids are common practice in the industry; however, they are not suitable for our ecology and health. Therefore, there is a need to implement sustainable cooling/lubrication system that helps the environment and improves the machinability of light weight alloys. This review is presenting the machining and sustainability characteristics of minimum quantity lubrication (MQL), nanofluids-MQL, Ranque-Hilsch vortex tube MQL (RHVT + MQL), cryogenic-MQL as alternative to flood cooling applications in the cutting of light-weight materials. It can be stated that MQL advancements can offer clear guidelines to implement hybrid cooling techniques to improve heat transfer, lubrication, and sustainable implementations.
  • [ X ]
    Öğe
    Resource savings by sustainability assessment and energy modelling methods in mechanical machining process: A critical review
    (Elsevier Sci Ltd, 2022) Sarikaya, Murat; Gupta, Munish Kumar; Tomaz, Italo; Krolczyk, Grzegorz M.; Khanna, Navneet; Karabulut, Sener; Prakash, Chander
    In machining processes, there are contradictions between high efficiency and environmentally-friendly machining. This indicated that there is a major potential for sustainable machining to both increase efficiency and protect ecological balance. For this, the employment of effective methods has become imperative to reduce resource use. In this way, the use of analysis and optimization tools to select the tool material, cutting parameters, cooling/lubrication conditions, etc., will be a benefit for minimizing waste without sacrificing efficiency. In the literature, researchers have used various methods to reveal the requirements of sustainability. However, reaching the concept of sustainable machining by using one more than technique confuses the readers. Therefore, it was deemed necessary to present and discuss the current methods, models and analyzes in a comprehensive review paper. In this context, this paper reviewed the previously published works, especially focusing on sustainability and energy consumption modeling methods in machining operations. At the end of the study, it was seen that LCA provides a systematic and quantitative view of the system and thus can act as a decision support tool. Moreover, it can give an idea to the manufacturers about the improvement of the process and the areas of innovation. However, the method has several disadvantages such as relatively expensive and specific software, obtaining inventory data, impractical to use, time-consuming and requires large amounts of data. Various mathematical models and algorithms have been developed to deal with the complex situations and offer a more practical use compared to LCA. However, it is difficult to state that clear results have been achieved thanks to these models. It was seen that in complex machining processes, only approximate results can be found with models, which leads to questioning the reliability of the models.

| Sinop Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Kütüphane ve Dokümantasyon Daire Başkanlığı, Sinop, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim