Yazar "Mulayim, Gulden" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Nonintrusive model order reduction for cross-diffusion systems(Elsevier, 2022) Karasozen, Bulent; Mulayim, Gulden; Uzunca, MuratIn this paper, we investigate tensor based nonintrusive reduced-order models (ROMs) for parametric cross-diffusion equations. The full-order model (FOM) consists of ordinary differential equations (ODEs) in matrix or tensor form resulting from finite difference discretization of the differential operators by taking the advantage of Kronecker structure. The matrix/tensor differential equations are integrated in time with the implicit-explicit (IMEX) Euler method. The reduced bases, relying on a finite sample set of parameter values, are constructed in form of a two-level approach by applying higher-order singular value decomposition (HOSVD) to the space-time snapshots in tensor form, which leads to a large amount of computational and memory savings. The nonintrusive reduced approximation for an arbitrary parameter value is obtained through tensor product of the reduced basis by the parameter dependent core tensor that contains the reduced coefficients. The reduced coefficients for new parameter values are computed with the radial basis functions. The efficiency of the proposed method is illustrated through numerical experiments for two-dimensional Schnakenberg and three-dimensional Brusselator cross-diffusion equations. The spatiotemporal patterns are accurately predicted by the reduced-order models with speedup factors of orders two and three over the full-order models. (c) 2022 Elsevier B.V. All rights reserved.Öğe Reduced order modelling of nonlinear cross-diffusion systems(Elsevier Science Inc, 2021) Karasozen, Bulent; Mulayim, Gulden; Uzunca, Murat; Yildiz, SuleymanIn this work, we present reduced-order models (ROMs) for a nonlinear cross-diffusion problem from population dynamics, the Shigesada-Kawasaki-Teramoto (SKT) equation with Lotka-Volterra kinetics. The formation of the patterns of the SKT equation consists of a fast transient phase and a long stationary phase. Reduced order solutions are computed by separating the time into two time-intervals. In numerical experiments, we show for one- and two-dimensional SKT equations with pattern formation, the reduced-order solutions obtained in the time-windowed form, i.e., principal decomposition framework, are more accurate than the global proper orthogonal decomposition solutions obtained in the whole time interval. The finite-difference discretization of the SKT equation in space results in a system of linear-quadratic ordinary differential equations. The ROMs have the same linear-quadratic structure as the full order model. Using the linear-quadratic structure of the ROMs, the computation of the reduced-order solutions is further accelerated by the use of proper orthogonal decomposition in a tensorial framework so that the computations in the reduced system are independent of the full-order solutions. Furthermore, the prediction capabilities of the ROMs are illustrated for one- and two-dimensional patterns. Finally, we show that the entropy is decreasing by the reduced solutions, which is important for the global existence of solutions to the nonlinear cross-diffusion equations such as the SKT equation. (C) 2021 Elsevier Inc. All rights reserved.