Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Macit, Mustafa" seçeneğine göre listele

Listeleniyor 1 - 4 / 4
Sayfa Başına Sonuç
Sıralama seçenekleri
  • [ X ]
    Öğe
    2-[(4-Ethoxyphenyl)iminomethyl]-5-methoxyphenol
    (Int Union Crystallography, 2009) Sahin, Zarife Sibel; Ersahin, Ferda; Macit, Mustafa; Isik, Samil
    The title compound, C16H17NO3, a Schiff base, is stabilized in the solid state in the phenol-imine tautomeric form, with the H atom located on the hydroxy O atom rather than on the N atom. This H atom is involved in a strong intramolecular O-H center dot center dot center dot N hydrogen bond. The molecule is almost planar, the angle between the benzene rings being 4.43 (13)degrees. C-H center dot center dot center dot pi interactions are also present.
  • [ X ]
    Öğe
    Experimental and Computational Study of (E)-4-Methyl-2-{[tris(hydroxymethyl)-methyl]iminiomethyl} phenolate
    (Int Union Crystallography, 2010) Tari, Gonca Ozdemir; Tanak, Hasan; Macit, Mustafa; Ersahin, Ferda; Isik, Samil
    [No abstract available]
  • [ X ]
    Öğe
    Two new Schiff bases of (E)-2,4-di-tert-butyl-6-((4-fluorophenylimino)methyl)phenol (I) and (E)-2,4-di-tert-butyl-6-((3-iodo-4-methylphenylimino)methyl)phenol (II): structural, spectroscopic and quantum chemical calculations
    (Taylor & Francis Ltd, 2023) Guzel, Enis; Macit, Mustafa; Erguzeloglu, Ebru; Kalecik, Sedanur; Kelesoglu, Zeynep; Yavuz, Metin
    In this study, two Schiff bases, (E)-2,4-di-tert-butyl-6-((4-fluorophenylimino)methyl)phenol (I) and (E)-2,4-di-tert-butyl-6-((3-iodo-4-methylphenylimino)methyl)phenol (II) are synthesized and characterized by XRD, FT-IR, UV-Vis and NMR techniques. (I) and (II) compounds display enol-imine form by O-H center dot center dot center dot N intramolecular hydrogen bonds. The title compounds are stabilized by C-H center dot center dot center dot p interactions. The presence of various inter molecular interactions and 2D-fingerprint regions are well supported by the Hirshfeld surface analysis. Also experimental optical energy band and gap studies are discussed. All chemical theoretical computations are calculated by Density Functional Theory (DFT) at B3LYP level by using 3-21G basis set. Chemical activity analyses are showed that compounds have large energy gaps, higher values of hardness and lower values of softness support the title molecules are high kinetic stability. Also, chemical activity properties generate foresight about electrophilic and nucleophilic nature.
  • [ X ]
    Öğe
    X-ray diffraction, Hirshfeld surface, local and global chemical activity studies of a Bis{(E)-2,4-di-tert-butyl-6-((3-iodo-4-methylphenylimino)methyl)phenolato-N,O-}copper(II) complex
    (Elsevier, 2020) Demircioglu, Zeynep; Uzun, Serap; Macit, Mustafa; Dege, Necmi
    Cu(II) complex of (BINO)Cu, (E)-2,4-di-tert-butyl-6-((3-iodo-4-methylphenylimino)methyl)phenol, has been synthesized and characterized by FT-IR, UV-Vis and X-ray diffraction techniques. The (BINO)Cu complex crystallizes in the triclinic space group P-1 with a = 14.0545 (5) angstrom, b = 18.5744 (8) angstrom, c = 20.0541 (7) angstrom, alpha = 93.317 (3)degrees, beta = 109.053 (3)degrees, gamma = 95.229 (3)degrees, Z = 4 and Z' = 2, the asymmetric unit contains 2 molecules. X-ray diffraction technique results showed that title complex is in a distorted square environment with tau=0.0436. Also, Hirshfeld surface (HS) analysis is carried out to understand the molecular interactions (fingerprint plots) and molecular surface contours. The close contacts of H center dot center dot center dot H/H center dot center dot center dot H (61.9%) and Cl center dot center dot center dot H/H center dot center dot center dot Cl (15.8%) shows a largest portion of total HS. Optimization of the title molecule was studied using B3LYP and M05-2X functionals in DFT method at the LANL2DZ basis set. Theoretical calculations is a good way for obtaining detailed information about local and global chemical activity, molecular and chemical properties which are reveal the electrophilic and nucleophilic nature. According to local chemical activity results (MEP, Fukui function and net charge analyses), the optimized structure shows more electrophilic nature than nucleophilic one. Optimized structure is a soft molecule (eta=1.689 eV for spin alpha and eta = 1.131eV for spin beta and s = 0.296 eV(-1) for spin alpha and s = 0.442 eV(-1) for spin (3) so it shows very high chemical reactivity, low kinetic stability and displays higher intramolecular charge transfer. The stability of the molecule arising from hyperconjugative interactions, charge delocalization was analyzed by using natural bond orbital analysis (HBO). (C) 2020 Elsevier B.V. All rights reserved.

| Sinop Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Kütüphane ve Dokümantasyon Daire Başkanlığı, Sinop, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim