Yazar "Gupta, Munish K." seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Improvement of machinability of Ti and its alloys using cooling-lubrication techniques: a review and future prospect(Elsevier, 2021) Pimenov, Danil Yu; Mia, Mozammel; Gupta, Munish K.; Machado, Alisson R.; Tomaz, Italo, V; Sarikaya, Murat; Wojciechowski, SzymonProducts made of titanium and its alloys are widely used in modern areas like the mechanical engineering, instrument making, aerospace and medical sector. High strength and low thermal conductivity are the causes of difficulties with the machinability of these alloys. It is important to find ways to increase machinability by cutting titanium alloys. One way to implement this is to apply various methods of cooling on workpieces of titanium alloys and on cutting tools during machining. In this review article, an extensive analysis of the literature on such cooling techniques as dry, conventional cooling system, minimum quantity of lubricant (MQL), minimum quantity cooling lubrication (MQCL), cryogenic lubrication, and high-pressure cooling (HPC) is performed. The following groups of Ti alloys are considered: high-strength structural and high-temperature Ti alloys, intermetallic compounds, pure titanium, as well as composites CFRPs/Ti alloys. For the processes of turning, milling, drilling, and grinding, etc. it is shown how the type of cooling affects the surface integrity include surface roughness, tool wear, tool life, temperature, cutting forces, environmental aspects, etc. The main advantages, disadvantages and prospects of different cooling methods are also shown. The problems and future trends of these methods for the machining of Ti and its alloys are indicated. (c) 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Products made of titanium and its alloys are widely used in modern areas like the mechanical engineering, instrument making, aerospace and medical sector. High strength and low thermal conductivity are the causes of difficulties with the machinability of these alloys. It is important to find ways to increase machinability by cutting titanium alloys. One way to implement this is to apply various methods of cooling on workpieces of titanium alloys and on cutting tools during machining. In this review article, an extensive analysis ofÖğe Multi-objective optimization of surface roughness, thrust force, and torque produced by novel drill geometries using Taguchi-based GRA(Springer London Ltd, 2019) Meral, Guven; Sarikaya, Murat; Mia, Mozammel; Dilipak, Hakan; Seker, Ulvi; Gupta, Munish K.A significant part of today's chip removal processes are drilling holes. Many parameters such as cutting parameters, material, machine tool, and cutting tool, etc., in the hole-drilling process affect performance indicators such as surface roughness, tool wear, force, torque, energy consumption, and costs etc. While cutting parameters are easily planned by the operator during drilling, the selection and planning of the drill geometry are more difficult. In order to design and produce the new drill geometry, a wide time and engineering research are needed. In this study, the design and fabrication of new drill geometry were performed to improve the hole-drilling performance. The performance of the fabricated drills was judged with regard to surface roughness, thrust force, and drilling torque. In the performance tests, four different drill geometries, four different cutting speed levels, and four different feed rate levels were selected. Holes were drilled on AISI 4140 material. In addition, the optimization was performed in two phases. Firstly, the mono-optimization was carried by using Taguchi's S/N analysis in which each performance output was optimized separately. Secondly, the multi-objective optimization was employed by using Taguchi-based gray relational analysis (GRA). For the purpose of the study, two different drill geometries were designed and fabricated. Experimental results showed that the designed Geometry 4 is superior to other geometries (geometry 1, geometry 2, and geometry 3) in terms of thrust force and surface roughness. However, in terms of drilling torque, geometry 2 gives better results than other drill geometries. It was found that for all geometries, obtained surface roughness values are lower than the surface roughness values expected from a drilling operation and therefore surface qualities (between 1.2 and 2.4m) were satisfactory.