Yazar "Guner, S. B." seçeneğine göre listele
Listeleniyor 1 - 7 / 7
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe An analysis on the relation between the seed distance and vertical levitation force for the multi-seeded YBCO using the modified advanced frozen image (MAFI) and experimental methods(Elsevier Science Sa, 2019) Ozturk, K.; Guner, S. B.; Abdioglu, M.; Demirci, M.; Celik, S.; Cansiz, A.The higher magnetic levitation force and related stiffness values are very important for Maglev and magnetic bearing applications. Also, larger superconducting surface area is needed for continuous and larger magnetic mediums with different geometries and dimensions in real scale industrial applications of superconducting systems. In this study, the cylindrical YBCO superconductors were fabricated by top-seeded melt growth (TSMG) method in single and two-seeded forms with different seed distances and then the magnetic force and stiffness measurements were carried out by three axes magnetic force measurement system in different cooling heights (CH) of 20mm and 75 mm. Additionally, a new analytical method, based on the magnetic dipole approximation, is proposed to calculate the levitation force in this study, named as Modified Advanced Frozen Image Method (MAFI), since although the Advanced Frozen Image Method in literature can calculate the levitation force with hysteresis, this method does not include the size effect of the superconductor. In the experimental studies, it is seen that the maximum levitation force values obtained by PMG with three PMs (named PMG-1) are more than two times higher than that of obtained with single PM for all samples with different distance of seeds, because of the higher magnetic flux distribution of related PMG arrangement than the single PM. In addition, the maximum magnetic levitation force value firstly increased and then decreased due to current coupling effect weakness by increasing distance of seeds. The calculated analytical levitation force results are not compatible with the experimental results without current coupling effect, but a well agreement is observed when the current coupling effect is taken into account in calculations. Also the MAFI method was tested with different dimensions of superconductors and the obtained results indicated the success of the proposed method. The maximum levitation force values obtained with MAFI method increased with increasing dimensions of HTS and PMs. Thus, one can say that the MAFI method is useful for the levitation force calculations between multi-seeded superconductors and PMGs with different dimensions and for different CHs. As a result, the analytical levitation force values obtained with the MAFI method are agree with the experimental levitation force sufficiently and this method can give fast calculation results without any divergence problem. This method can be thought as an alternative to the numerical calculation methods, having serious divergence problems for much amount and bigger size superconducting samples, therefore it will be useful to clarify bulk superconducting properties as supporter to the experimental studies. (C) 2019 Elsevier B.V. All rights reserved.Öğe Effect of Adding on the Critical Current Density and Lateral Levitation Force of Bulk(Springer/Plenum Publishers, 2015) Savaskan, B.; Koparan, E. Taylan; Guner, S. B.; Celik, S.; Ozturk, K.; Yanmaz, E.We fabricated malic acid -added bulks by wet mixing and Two-step solid state reaction method. The effects of adding malic acid on , behaviour and lateral levitation force features of bulk have been investigated. A systematic decrease in the critical temperature with increasing adding level confirms the substitution of C at the B site of . While the 4 wt% sample showed the best of at 4 T and 5 K, 15 wt% sample showed uncompetitive lower critical current density , which ascribes the poor connectivity due to the excessive unsubstituted C distribution at grain boundaries and the presence of high MgO amount. At 24 and 28 K, the 4 and 6 wt% malic-acid-added samples exhibit a higher lateral force than pure sample. Based on the observed values of M-H, (H) and lateral levitation force , it can be concluded that the 4 wt% malic-acid-added sample is the best of the studied samples.Öğe Effects of Bi-2212 addition on the levitation force properties of bulk MgB2 superconductors(Springer, 2016) Koparan, E. Taylan; Savaskan, B.; Guner, S. B.; Celik, S.We present a detailed investigation of the effects of Bi2Sr2Ca1Cu2O8+kappa (Bi-2212) adding on the levitation force and magnetic properties of bulk MgB2 obtained by hot press method. The amount of Bi-2212 was varied between 0 and 10 wt% (0, 2, 4, 6, 10 wt%) of the total MgB2. Moreover, we present MgB2 bulk samples fabricated by using different production methods including hot pressing method to our knowledge. All samples were prepared by using elemental magnesium (Mg) powder, amorphous nano-boron (B) powder and Bi-2212 powder which are produced by hot press method. As a result of hot press process, compact pellet samples were manufactured. The vertical and lateral levitation force measurements were executed at the temperatures of 20, 24 and 28 K under zero-field-cooled (ZFC) and field-cooled (FC) regimes for samples with various adding levels. At 24 K and 28 K under ZFC regime, the 2 wt% Bi-2212 added sample exhibits a higher vertical levitation force than the pure sample. Bi-2212 added MgB2 samples compared to the pure sample have lower attractive force values in FC regime. The magnetic field dependence of the critical current density J(c) was calculated from the M-H loops for Bi-2212 added MgB2 samples. The 2 wt% Bi-2212 added sample has the best levitation and critical current density performance compared to other samples. The critical temperature (T-c) has slightly dropped from 37.8 K for the pure MgB2 sample to 36.7 K for the 10 wt% of Bi-2212 added sample. The transition temperature slightly decreases when Bi-2212 adding level is increased.Öğe Improvement in levitation force performance of bulk MgB2 superconductors through coronene powder adding(Elsevier Science Sa, 2017) Erdem, O.; Abdioglu, M.; Guner, S. B.; Celik, S.; Kucukomeroglu, T.The effect of coronene (C24H12) addition on the levitation force properties of MgB2 superconductor has been investigated for the first time in this study. The polycrystalline disk-shaped MgB2 + y wt % C24H12 samples (y = 0, 2, 4, 6, 8, 10), were synthesized by a pellet/closed tube method at 850 degrees C under Ar atmosphere, after hot pressing at 200 degrees C. XRD analysis indicates a decrease in lattice parameters of coronene added samples and confirms substitution of carbon in boron sites. An increase in lattice strain and a decrease in grain size are observed due to the carbon substitution effect. Vertical and lateral levitation force measurements under zero-field-cooled and field-cooled regimes were carried out at different temperatures of 20, 25 and 30 K. It was found that the coronene addition significantly increases the high-field critical current density of MgB2. The J(c) values were obtained as 4.6 x 10(3) Acm(-2) and 1.3 x 10(4) Acm(-2) for pure and 4 wt % coronene added samples at 20 K and 4 T. In addition, the levitation force measurements show that 4 wt % coronene adding is very effective in increasing both the vertical and lateral levitation force performances at 20 K. The maximum levitation force for 4 wt % coronene added sample corresponds to 7.58 N/g whereas the reference sample shows 6.73 N/g at 20 K in ZFC regime. The results point out that the hydrocarbon of C24H12 is an effective carbon-containing additive for MgB2 and can be useful for optimizing the levitation performance of MgB2 superconductors for potential applications. (C) 2017 Elsevier B.V. All rights reserved.Öğe Investigation of magnetic force properties between different PMGs and multi-seeded YBCO superconductors with different seed distances(Elsevier, 2019) Abdioglu, M.; Ozturk, K.; Guner, S. B.; Celik, S.; Kucukomeroglu, T.The magnetic levitation force in vertical direction and guidance force in lateral direction should be increased for enhancing the loading capacity and stability of Maglev systems, respectively. In this study, we have produced multi-seeded YBCO (YBa2Cu3O7) superconductors with two seeds and investigated the effect of seed distance on the vertical levitation force and lateral guidance force properties by using different permanent magnetic guideway (PMG) arrangements. Although there are studies in literature related to different distance, orientation and angle of seeds; there is no detailed study investigating the effect of seed distance on the vertical and lateral magnetic force properties of Maglev systems depending on different types of PMGs. In this study, after the sample fabrication, the optimum PMG arrangement were determined by using numerical simulation to obtain magnetic flux density distribution. It is determined that both maximum levitation and guidance force values firstly increased with increasing the seed distance from 0 to 4 mm and then related forces decreased with increasing the seed distance from 4 to 16 mm but still keep the higher force values than the sample with the seed distances of 0 mm. This situation is clarified as the increasing of the seed distance to an optimum value enhances both the levitation and guidance forces simultaneously and this is very important for levitation force applications because it causes to easy control of the Maglev system in vertical and lateral directions.Öğe Magnetic properties of the welded joined TSMG Y123+x wt% Y211 (x=20 and 30) bulk superconductors(Elsevier, 2019) Cakir, B.; Ozturk, K.; Guner, S. B.; Celik, S.; Aydiner, A.Although the welding techniques have been used to join for bulk YBCO superconductors with a sintered superconductor, similar technique as a Ag2O added bulk YBCO superconductor fabricated by melt-powder-melt-growth process (MPMG) for using as a solder material has not been used, until now. Also, physical and the bulk superconducting properties of the welded samples have not been investigated. In this study, two 20 wt% Y211 and two 30 wt% Y211 added YBCO main samples were fabricated by cold top seeding-melt-growth (TSMG) method by using an Nd123 seed. Two main samples having the same Y211 addition and welding sample positioned between the main samples stacked and welded thermally with a pressure source simultaneously. It can be seen from the levitation force measurement, making before the welding process, that the 30 wt% Y211 added samples have the larger the maximum repulsive forces values than the 20 wt% Y211 added and Ag2O added welding samples but at the same order. After the welding process the welded samples cut into the specimens, to investigate micro structure and electromagnetic properties, positioned above, on and below of the welding region of the each welded Y123 samples. From the SEM analysis a continuous structural phase was obtained between the solder material and the main samples with a good integration without any boundary gap or defects. The welding process had no negative noticeable effect on T-c of the samples under zero magnetic field, while superconducting transition width (Delta T-c) of the specimen cutting from the 30 wt% Y211 added sample (Y30-ab) is smaller the specimen cutting from the 20 wt% Y211 added sample (Y20-ab) under applied magnetic field points out that Y30-ab is more resistant to the applied field than the Y20-ab because of the 211 addition. In addition, 30 wt% 211 addition ratio is more efficient for welding region and whole welded sample in terms of the supplying uniform superconducting properties as J(c). The obtained results on welded joined bulk superconductor can be beneficial to increase application potential of these superconducting materials in real scale magnetic systems.Öğe The size effect on the magnetic levitation force of MgB2 bulk superconductors(Elsevier Sci Ltd, 2016) Savaskan, B.; Koparan, E. T.; Guner, S. B.; Celik, S.; Yanmaz, E.In this study, the size effect on the magnetic levitation performance of disk-shaped MgB2 bulk superconductors and permanent magnets was investigated. MgB2 samples with varying diameters of 13 mm, 15 mm and 18 mm, each of which were 2 g in mass, were prepared by two-step solid state reaction method. Vertical levitation force measurements under both zero-field-cooled (ZFC) and field-cooled (FC) regimes were carried out at different temperatures of 20, 24 and 28 K. It was determined that the levitation force of the MgB2 strongly depends on both the diameters of the sample and the permanent magnet. In ZFC regime, the maximum levitation force value for the permanent magnet and the sample 18 mm in diameters reached to the 8.41 N at 20 K. In addition, in FC regime, attractive and repulsive force increased with increasing diameters of the sample and the permanent magnet. In that, the sample with 18 mm in diameter showed the highest attractive force value -3.46 N at 20 K and FC regime. The results obtained in this study are very useful in magnetic levitation devices as there is no detailed study on the size of superconductors and permanent magnets. (C) 2016 Elsevier Ltd. All rights reserved.