Yazar "Gunay, Mustafa" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe A review on aluminum alloys produced by wire arc additive manufacturing (WAAM): Applications, benefits, challenges and future trends(Elsevier, 2024) Sarikaya, Murat; Onler, Dilara Basil; Dagli, Salih; Hartomacioglu, Selim; Gunay, Mustafa; Krolczyk, Grzegorz M.Metal additive manufacturing is advancing with increasing momentum and attracting great attention. The Wire Arc Additive Manufacturing (WAAM) process, one of the metal additive manufacturing methods, involves melting a filler wire with an electric arc and depositing metal droplets layer by layer along the planned path. Aluminum alloys produced by the WAAM process have been in high demand in the industry, especially in the last decade. The WAAM process stands out as a suitable method for many industries due to its low investment cost, high deposition rates and the advantages of creating relatively complex parts. Key application areas of aluminum alloys produced using WAAM include aerospace, automotive, marine, and energy sectors, where lightweight structures, corrosion resistance, and high strength are critical. Much research has been done and innovative applications, including hybrid systems, have been developed to prevent defects such as residual stresses, cracks, porosity and delamination. This review article provides a comprehensive overview of the use of the WAAM process in aluminum alloys over the past decade. In the article, firstly, aluminum alloys, the WAAM technique and its types are introduced. In the following section, the methods used to improve mechanical properties and optimize the microstructure are examined in detail. In the next section, the difficulties encountered when using aluminum alloys in WAAM applications are discussed in detail. In the discussion section, current developments are evaluated, and in the last section, suggestions for future studies and inferences obtained from this study are presented. As a result, WAAM-CMT and hybrid systems were found to be effective in reducing defects such as porosity, distortion and residual stress. In addition, post-processing heat treatments and surface treatment methods are also crucial for improving mechanical properties. Finally, more research is needed in the areas of 7xxx series alloys, repair applications and environmental sustainability.Öğe Analytical Modeling Methods in Machining: A State of the Art on Application, Recent Challenges, and Future Trends(Springer Heidelberg, 2024) Korkmaz, Mehmet Erdi; Gupta, Munish Kumar; Sarikaya, Murat; Gunay, Mustafa; Boy, Mehmet; Yasar, Nafiz; Demirsoz, RecepInformation technology applications are crucial to the proper utilization of manufacturing equipment in the new industrial age, i.e., Industry 4.0. There are certain fundamental conditions that users must meet to adapt the manufacturing processes to Industry 4.0. For this, as in the past, there is a major need for modeling and simulation tools in this industrial age. In the creation of industry-driven predictive models for machining processes, substantial progress has recently been made. This paper includes a comprehensive review of predictive performance models for machining (particularly analytical models), as well as a list of existing models' strengths and drawbacks. It contains a review of available modeling tools, as well as their usability and/or limits in the monitoring of industrial machining operations. The goal of process models is to forecast principal variables such as stress, strain, force, and temperature. These factors, however, should be connected to performance outcomes, i.e., product quality and manufacturing efficiency, to be valuable to the industry (dimensional accuracy, surface quality, surface integrity, tool life, energy consumption, etc.). Industry adoption of cutting models depends on a model's ability to make this connection and predict the performance of process outputs. Therefore, this review article organizes and summarizes a variety of critical research themes connected to well-established analytical models for machining processes.Öğe Cutting forces and temperature measurements in cryogenic assisted turning of AA2024-T351 alloy: An experimentally validated simulation approach(Elsevier Sci Ltd, 2022) Gupta, Munish Kumar; Korkmaz, Mehmet Erdi; Sarikaya, Murat; Krolczyk, Grzegorz M.; Gunay, Mustafa; Wojciechowski, SzymonAluminium alloys are widely used in modern engineering applications such as automobile, aerospace etc because of its characteristics. The machining of aluminium alloys are also considered as difficult because of its sticky and soft nature, low thermal conductivity, strain hardening effect etc. The cooling conditions employed at cutting zone improved the machining performance but the resources, material consumption, skilled labor etc. are also required for performing the machining experiments. Therefore, the simulation of process parameters with the help of Finite Element Modelling (FEM) during machining is highly researched topic these days. In this work, a new practice from measurement science i.e., FEM simulation was performed with AdvantEdge software and the prediction models were developed for evaluating the cutting forces and cutting temperature while machining AA2024-T351 alloy under dry, liquid nitrogen (LN2) and carbon dioxide (CO2) conditions. Initially, the 3D turning model was developed and the results were compared with experimental findings. The results obtained from simulation model are very close with experimental results with minimum standard value of 0.67 (5.7%) for cutting forces and 4.58 (6.16%) for cutting temperature. Thus, it is worthy to mention that the 3D FE model is efficient and effective to predict and measurement results with minimum error.