Yazar "Guler, Cem" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Assessing the Antiangiogenic Effects of Chalcones and Their Derivatives(Taylor & Francis Ltd, 2024) Burmaoglu, Serdar; Gobek, Arzu; Anil, Derya Aktas; Alagoz, Mehmet Abdullah; Guner, Adem; Guler, Cem; Hepokur, CeylanPathological angiogenesis plays a critical role in tumorigenesis and tumor progression, and anti-angiogenesis therapies have evinced promising antitumor effects in solid tumors. Chalcone skeleton has been regarded as a potential antitumor agent that also targets angiogenesis. In this study, we designed twenty-one non-fluoro-substituted chalcones (13-18, 24-27) and saturated chalcone derivatives (19-23, 28-33) as anti-angiogenic compounds. During the initial stage, these compounds were assessed for their anti-cancer activities against MCF-7 cancer cell lines according to the MTT assay. The compounds revealed satisfactory anti-proliferative capability. An ex vivo fertilized hens' egg-chorioallantoic membrane (HET-CAM) angiogenic study was conducted for the compounds to gauge their mortality and toxicity, which, in turn, revealed a potent anti-angiogenic effect. Eight compounds (16, 17, 21, 24, 26, 27, 29, and 31) significantly reduced densities of capillaries on CAM, whereas compounds 27 and 29 were the most effective anti-angiogenic agents, when compared with Suramin. Moreover, RT-qPCR analysis demonstrated that the anti-angiogenic activity was associated with the fold changes of VEGFR2. Molecular docking studies were conducted for compounds to investigate their mode of interaction within the binding site of VEGFR-2 kinases. This work provided a basis for further design, structural modification, and development of chalcone derivatives as new anti-angiogenic agents.Öğe Polymeric nanoparticles tryptophan-graft-p(HEMA): a study on synthesis, characterization, and toxicity(Springer, 2023) Guler, Cem; Gulcemal, Suleyman; Guner, Adem; Akgol, Sinan; Yavasoglu, N. Ulku KarabayPoly-hydroxyethyl methacrylate [p(HEMA)] is one of the most widely used polymers in different biomedical applications because it is a biocompatible and a biodegradable material. Tryptophan (Trp) is a biocompatible, antioxidant, and anti-inflammatory amino acid. Trp modification contributes to the more effective use of nanoparticles in cancer therapy. The aim of this study was to synthesize polymeric nanoparticles tryptophan-graft-poly(HEMA) [Trp-g-p(HEMA)] and assess characterization and toxicity/biocompatibility potential of it in terms of using a drug carrier. The nanoparticles were synthesized with surfactant-free emulsion polymerization and grafting technique and the grafting efficiency was found as 78.65 +/- 2.48%. The characterization of the nanoparticles was performed by FT-IR spectroscopy, zeta analysis, scanning electron microscopy, atomic force microscopy, and swelling test. The nanopolymers had the spectra from 750 to 4000 cm(-1) and characteristic peaks of stretching bands, 164.1 +/- 29.2 nm average size, - 10.2 +/- 8.7 mV surface charge, smooth surface, and nearly spherical shape. The swelling ratios of them were estimated as 79.52 +/- 0.86% in d.w. and 93.33 +/- 2.32% in PBS at 25 degrees C, 35.71 +/- 0.62% in d.w., and 42.86 +/- 0.64% in PBS at 37 degrees C. The nanoparticles did not induce cytotoxicity, oxidative stress generation, and genotoxicity on human healthy lymphocyte cells. Trp-g-p(HEMA) had hemocompatible properties. We found no irritant effect in the HET-CAM test. The acute oral LD50 value of the nanopolymers was > 2000 mg/kg body weight on BALB/c mice. We announce that the polymeric nanoparticles Trp-g-p(HEMA) is a biocompatible material and has potential to use as a drug carrier for oral, intravenous, and ocular administrations.