Yazar "Guenay, Mustafa" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Comparison of Tool Wear, Surface Morphology, Specific Cutting Energy and Cutting Temperature in Machining of Titanium Alloys Under Hybrid and Green Cooling Strategies(Korean Soc Precision Eng, 2023) Gupta, Munish Kumar; Nieslony, P.; Korkmaz, Mehmet Erdi; Kuntoglu, Mustafa; Krolczyk, G. M.; Guenay, Mustafa; Sarikaya, MuratCutting energy must be reduced in order to make machining processes more eco-friendly. More energy was expended for the same amount of material removed, hence a higher specific cutting energy (SCE) implies inefficient material removal. Usually, the type of coolants or lubricants affects the SCE, or the amount of energy needed to cut a given volume of material. Therefore, the present work deals with a study of SCE in the turning of Ti-3Al-2.5V alloy under green cooling strategies. In spite of this, the research effort is also focused on the mechanism of tool wear, surface roughness, and cutting temperature under hybrid cooling, i.e., minimum quantity lubrication (MQL) and cryogenic. The tool wear rate, were explored with tool mapping analysis, and the results were compared with dry, MQL, and liquid nitrogen (LN2) conditions. The tool wear rate analysis claims that the dry condition causes more built up edge (BUE) formation. In addition, the hybrid cooling conditions are helpful in reducing the SCE while machining titanium alloys.Öğe In-process detection of cutting forces and cutting temperature signals in cryogenic assisted turning of titanium alloys: An analytical approach and experimental study(Academic Press Ltd- Elsevier Science Ltd, 2022) Gupta, Munish Kumar; Korkmaz, Mehmet Erdi; Sarikaya, Murat; Krolczyk, Grzegorz M.; Guenay, MustafaIn-process detection of cutting forces, temperature, roughness, wear etc. during machining of titanium alloys are very important. The Finite element (FE) analysis plays an important role in monitoring and detection of machining responses. It offers a high accuracy in modeling of dry cutting processes and its performance in modeling of cryogenic machining process is a matter of interest. In this context, current investigation focuses on the dry turning and LN2/CO2 cooling assisted turning process of commonly used Ti6Al4V alloy. It is very useful material in the biomedical sector, and the simulation of cutting forces and cutting temperature via finite element method (FEM) has been performed. In addition, the simulation results are validated with experimental work. The results show that the deviations between FE modeling and experimental results for the cutting temperature are the average of 5.54%, 5.18% and 8.42% for the dry, LN2 and CO2 cooling conditions, respectively. On the other hand, the deviations from FE modeling and cutting force test results were 3.74%, 3.358%, and 3.03% under dry, LN2 and CO2 cooling conditions, respectively.