Yazar "El-Emam, Ali A." seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Structural and spectroscopic analysis of 3-[(4-phenylpiperazin-1-yl)methyl]-5-(thiophen-2-yl)-2,3-dihydro-1,3,4-oxadiazole-2-thione with experimental (FT-IR, Laser-Raman) techniques and ab initio calculations(Elsevier, 2014) Al-Omary, Fatmah A. M.; Karakaya, Mustafa; Sert, Yusuf; Haress, Nadia G.; El-Emam, Ali A.; Cirak, CagriExperimental and theoretical harmonic vibrational frequencies of 3-[(4-phenylpiperazin-1-yl)methyl]-5-(thiophen-2-yl)-2,3-dihydro-1,3,4-oxadiazole-2-thione have been investigated in this paper. Experimental FT-IR (400-4000 cm(-1)) and Laser-Raman spectra (100-4000 cm(-1)) of title compound in solid phase have been recorded. Theoretical vibrational frequencies and geometric parameters (bond lengths and bond angles) have been also calculated using ab initio Hartree Fock (HF), density functional theory (B3LYP hybrid functional) methods with 6-311++G(d,p) basis set, for the first time. Assignments of vibrational frequencies have been performed by potential energy distribution (PED) analysis. Total density of state (TDOS) diagrams analysis has been also presented for title compound. Theoretical optimized geometric parameters and vibrational frequencies have been compared with the corresponding experimental data, and they have been shown to be in a good agreement with each other. Besides, highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies have been found. (C) 2014 Elsevier B.V. All rights reserved.Öğe Theoretical and experimental spectroscopic studies, XPS analysis, dimer interaction energies and molecular docking study of 5-(adamantan-1-yl)-N-methyl-1,3,4-thiadiazol-2-amine(Pergamon-Elsevier Science Ltd, 2019) Al-Wahaibi, Lamya H.; Sert, Yusuf; Ucun, Fatih; Al-Shaalan, Nora H.; Alsfouk, Aisha; El-Emam, Ali A.; Karakaya, MustafaThis research relates to the molecular structure, electronic properties and IR, Raman and XPS analyses of the potential chemotherapeutic agent namely, 5-(adamantan-1-yl)-N-methyl-1,3,4-thiadiazol-2-amine. Another purpose is to explore the structural stabilities and consistencies and, to assess the stable interaction energy and intermolecular hydrogen bond geometry for its dimeric structure. The monomer and dimer optimizations of the molecule have been calculated by the DFT method using various functionals such as B3LYP, B3PW91, mPW1PW91 and M06-2X. Although the minimum energy optimization was calculated at the B3LYP functional, the BSSE-corrected and uncorrected interaction energies of the dimer structure were more effectively obtained with the M062X functional. This assured us a test of the efficiency of M06-Class functional calculations on intermolecular interactions of strongly bound systems. Additionally, the molecular docking study was done between our molecule (ligand) and the previously studied and known as cortisone reductase 11 beta-Hydroxysteroid dehydrogenase type 1 (receptor, 11-beta-HSD1: PDB-2ILT).