Yazar "Doruk, Tugrul" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Synthesis, structural, spectral and antimicrobial activity studies of copper-nalidixic acid complex with 1,10-phenanthroline: DFT and molecular docking(Pergamon-Elsevier Science Ltd, 2020) Aycan, Tugba; Ozturk, Filiz; Doruk, Tugrul; Demir, Serkan; Fidan, Melek; Padaoglu, HumeyraThe mix-ligand coordination compound, [Cu(Nal)(Phen)(H2O)]center dot(Phen)center dot ClO4 center dot(H2O)(2) (Nal= Monoanion of nalidixic acid and Phen = 1,10Phenanthroline), was investigated by focusing on its supramolecular architecture. Structural properties of the complex were characterized by XRD, spectroscopic methods and elemental analysis. The complex has crystallized in the triclinic crystal system and P-1 space group. In the structure where the Cu (II) ion is in the center of symmetry, nalidixate anion and water molecule coordinated to Cu (II) metal through oxygen atoms while phen coordinated through nitrogen atoms. The monomer units are connected by hydrogen bonds to form supramolecular structures. The ground state molecular structure of the complex was optimized using DFT/B3LYP/LANL2DZ method, and compared with experimental X-ray geometry. The FT-IR study of the complex was carried out in the middle IR region focusing on the characteristic vibrations of the free ligands and the complex. Scaled calculated vibrational frequencies are compared with experimental values. The magnetic properties of the complex were investigated by electron paramagnetic resonance (EPR) spectroscopy. Further ultra-violet (UV)-visible spectral analysis was also performed to understand optical properties. The experimental UV-Vis data were associated with the calculated frontier molecular orbitals HOMO/LUMO and, molecular electrostatic potentials (MEP) are also investigated. Biological study of the complex against Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae, and Candida albicans showed very strong antibacterial activity with MIC values ranging from 128 mu g/ml to 1 mu g/ml concentration. The optimized complex is docked to the DNA Gyrase (3LPX) and gyrase tip IIA topoisomerase (3UC1). (c) 2020 Elsevier B.V. All rights reserved.Öğe Synthesis, XRD, spectroscopic (UV-Vis, IR, EPR) and biological evaluations of cobalt(II)-ciprofloxacin complex as antimicrobial agent: In silico molecular docking and ADME(Elsevier, 2024) Aycan, Tugba; Ozturk, Filiz; Doruk, TugrulCobalt(II)-Ciprofloxacin complex ([Co(Cip)(2)(H2O)(2)].2(H2PO4).8(H2O); Cip=Ciprofloxacin) containing phosphoric acid was synthesized and its structure was characterized by numerous analytical techniques such as FT-IR (Fourier Transform Infrared), UV-Vis (Ultraviolet-Visible), EPR (Electron Paramagnetic Resonance), TGA (Thermogravimetric Analysis), elemental analysis and SCXRD (single crystal X-ray diffraction) for structural elucidation. According to XRD data, the environment of Cobalt has octahedral geometry with ciprofloxacin ligand bonded as bidentate (keto and carboxyl group) and aqua ligand. It was revealed that the metal complex left metal oxide and other residues as the final product in the multi-step decomposition TGA curve in the range of 20-1000 degrees C. The contribution of intermolecular interactions that lead to molecular packing was analyzed using Hirshfeld surface analysis. The synthesized complex was tested for antimicrobial activity against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Candida albicans. We conducted a molecular docking study using AUTODOCK 4.2 to investigate the binding energy and interaction modes of a highly potent microbial complex with three different enzymes: S. aureus DNA gyrase (PDB ID: 2XCT), GyrA (PDB ID: 3LPX), and mycobacterium tuberculosis gyrase type IIA topoisomerase (PDB ID: 3UC1).