Yazar "Dogan, Sengul Dilem" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Discovery of hydrazone containing thiadiazoles as Mycobacterium tuberculosis growth and enoyl acyl carrier protein reductase (InhA) inhibitors(Elsevier France-Editions Scientifiques Medicales Elsevier, 2020) Dogan, Hilal; Dogan, Sengul Dilem; Gunduz, Miyase Gozde; Krishna, Vagolu Siva; Lherbet, Christian; Sriram, Dharmarajan; Sahin, OnurTuberculosis, caused by Mycobacterium tuberculosis, is a serious infectious disease and remains a global health problem. There is an increasing need for the discovery of novel therapeutic agents for its treatment due to the emerging multi-drug resistance. Herein, we present the rational design and the synthesis of eighteen new thiadiazolylhidrazones (TDHs) which were synthesized by intramolecular oxidative N-S bond formation reaction of 2-benzylidene-N-(phenylcarbamothioyl)hydrazine-lcarboximidamide derivatives by phenyliodine(III) bis(trifluoroacetate) (PIFA) under mild conditions. The compounds were characterized by various spectral techniques including FTIR, H-1 NMR, C-13 NMR and HRMS. Furthermore, the proposed structure of TDH12 was resolved by single-crystal X-ray analysis. The compounds were evaluated for their in vitro antitubercular activity against M. tuberculosis H37Rv. Among them, some compounds exhibited remarkable antimycobacterial activity, MIC = 0.78-6.25 mu g/mL, with low cytotoxicity. Additionally, the most active compounds were screened for their biological activities against M. tuberculosis in the nutrient starvation model. Enzyme inhibition assays and molecular docking studies revealed enoyl acyl carrier protein reductase (InhA) as the possible target enzyme of the compounds to show their antitubercular activities. (C) 2020 Elsevier Masson SAS. All rights reserved.Öğe Linking quinoline ring to 5-nitrofuran moiety via sulfonyl hydrazone bridge: Synthesis, structural characterization, DFT studies, and evaluation of antibacterial and antifungal activity(Elsevier, 2023) Dogan, Sengul Dilem; Ozcan, Esma; Cetinkaya, Yasin; Han, Muhammed Ihsan; Sahin, Onur; Bogojevic, Sanja Skaro; Nikodinovic-Runic, JasminaIn the present work, we report the synthesis, structural characterization, and computational studies of (E)-N'-((5nitrofuran-2-yl)methylene)quinoline-8-sulfonohydrazide (QNF) as a potential antimicrobial drug candidate. To design the target molecule, we utilized a molecular hybridization technique that connects two antimicrobial pharmacophores (quinoline and 5-nitrofuran rings) with a sulfonyl hydrazone moiety. QNF was synthesized by the condensation of quinoline-8-sulfonohydrazide with 5-nitrofuran-2-carbaldehyde, and characterized by various spectral techniques including single-crystal X-ray crystallography. QNF was extensively evaluated for its antibacterial and antifungal activity. The inhibition capacity of QNF on Candida albicans filamentation and biofilm formation was further investigated. Biofilm inhibition of QNF against C. albicans was supported by molecular docking studies in the binding site of agglutinin-like sequence 3 (Als3). Drug-like profile of QNF was confirmed by in silico calculation of its significant physicochemical properties. Additionally, the optimized geometrical structure, natural bond orbital calculations, frontier molecular orbital and molecular electrostatic potential analysis of QNF were carried out using the density functional theory method at the B3LYP with 6-31+G (d,p) basis set. The predictions of 1H and 13C NMR chemical shift values were performed using the gauge-independent atomic orbital method. Structural parameters and NMR values obtained experimentally were compared with the calculated values.