Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Corman, M. Emin" seçeneğine göre listele

Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
  • [ X ]
    Öğe
    A highly sensitive and selective electrochemical sensor based on computer-aided design of molecularly imprinted polymer for the determination of leflunomide
    (Elsevier, 2022) Cetinkaya, Ahmet; Kaya, S. Irem; Corman, M. Emin; Karakaya, Mustafa; Atici, Esen Bellur; Ozkan, Sibel A.
    This study includes the electrochemical analysis of leflunomide (LEF), used in the treatment of rheumatoid arthritis, with a molecularly imprinted polymer (MIP) based sensor using different electroanalytical methods. In the design of MIPs, the choice of functional monomer is an important step in terms of the stability of the sensor. Based on the computational approach in this study, ortho-phenylenediamine (o-PD) was chosen as a functional monomer based on the comparison of interaction energies (delta E) between LEF and monomers, aniline (ANI) was chosen as a platform to develop MIP-based sensor. Morphological characterization of the developed p(ANI-o-PD) @MIP/GCE sensor was performed using Raman spectroscopy, surface electron microscopy (SEM), contact angle measurements, and electrochemical techniques. Quantitative analysis of LEF was performed using differential pulse voltammetry. Results showed that the p(ANI-o-PD)@MIP/GCE sensor has high selectivity and sensitivity. Under optimum conditions, the linear range was found to be 1 - 10 fM (r = 0.998) and the detection limit to be 0.291 fM. Also, the sensor was applied to pharmaceutical dosage form and serum samples to detect LEF, and satisfactory recovery results of 99.46% and 99.15% were obtained. Finally, the p(ANI-o-PD)@MIP/GCE sensor was evaluated using a non-imprinted polymer (NIP)-based electrochemical sensor. The proposed sensor with good reproducibility was effectively implemented for selective and sensitive detection of LEF in pharmaceutical and human serum samples. These results show that the molecular imprinting approach in detecting LEF is a highly effective technique in the potential of the newly developed sensor.
  • [ X ]
    Öğe
    Computational design and fabrication of a highly selective and sensitive molecularly imprinted electrochemical sensor for the detection of enzalutamide
    (Elsevier Science Sa, 2022) Kaya, S. Irem; Cetinkaya, Ahmet; Ozcelikay, Goksu; Corman, M. Emin; Karakaya, Mustafa; Atici, Esen Bellur; Ozkan, Sibel A.
    This study demonstrates the first electrochemical analysis of an anti-androgen drug enzalutamide with a molecularly imprinted polymer (MIP)-based sensor. An electrochemical sensor was developed through computational approaches for screening functional monomers in the rational design of MIPs. Based on the computational approach, ortho-phenylenediamine (o-PD) was selected as a functional monomer based on the comparison of interaction energies (Delta E) between enzalutamide and monomers. The characterization of the MIP-based sensor was investigated by Raman spectroscopy, surface electron microscopy (SEM), contact angle measurements, and electrochemical techniques. Different electrochemical techniques such as differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS) were utilized for the evaluation of MIP parameters (removal process, incubation time, monomer ratio etc.). MIP@ANI-co-o-PD/GCE showed a linear response in the concentration range between 1 x 10(-16) M and 1 x 10(-15) M with the limit of detection (LOD) and limit of quantification (LOQ) values of 0.019 fM and 0.065 fM, respectively. The application studies from human serum and pharmaceutical dosage form samples were concluded with good recovery results demonstrating the sensor's applicability, selectivity, precision, and accuracy. Furthermore, selectivity studies were carried out with similarly structured compounds teriflunomide and leflunomide. Lastly, the non-imprinted polymer (NIP) based electrochemical sensor was prepared and used for the performance evaluation of the MIP@ANI-co-o-PD/GCE sensor.
  • [ X ]
    Öğe
    Interface imprinted polymers with well-oriented recognition sites for selective purification of hemoglobin
    (Elsevier, 2021) Armutcu, Canan; Ozgur, Erdogan; Corman, M. Emin; Uzun, Lokman
    In this study, we introduced a new strategy to design interface imprinted polymers for a novel aspect of molecular imprinting technique, utilization of sacrificial metal oxide particles. In the first step, bovine hemoglobin (BHb) was adsorbed on zinc oxide (ZnO) particles, which were then used to synthesize polyacrylic acid-based molecular imprinting membrane by bulk polymerization in the presence of ethylene glycol dimethacrylate as a cross-linking agent. After polymerization terminated, BHb-ZnO particles were removed to leave effective imprint sites onto the bulk polymeric network which is responsible for the formation of template orientation. The characterization of membranes was investigated by using Fourier transform infrared (FTIR), Raman spectroscopy (RS), scanning electron microscopy (SEM), surface area measurements (BET analyses) and thermogravimetric analysis (TGA). The interface molecularly imprinted membranes (iMIMs) have a relatively high specific rebinding capacity of 65.98 mg/g and excellent selectivity towards BHb with a separation factor of 6.78. The equilibrium adsorption isotherms fitted well to Langmuir isotherms (R-2 = 0.9944) and the value of adsorption capability (Q(max)) and equilibrium constant (b) were estimated to be 73.53 mg/g and 1.36 mg/mL for the iMIM, respectively. The kinetics of adsorption fitted best to pseudo-second order (R-2 = 0.9912). The ZnO particles were used not only to ensure the preservation of the imprint cavities in the polymer network but also to lead to high template removal and better rebinding kinetics. This novel design with multiple recognition sites is quite simple and suitable for the separation of biomacromolecules.

| Sinop Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Kütüphane ve Dokümantasyon Daire Başkanlığı, Sinop, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim