Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Amiraliyev, G. M." seçeneğine göre listele

Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
  • [ X ]
    Öğe
    A uniform numerical method for dealing with a singularly perturbed delay initial value problem
    (Pergamon-Elsevier Science Ltd, 2010) Amiraliyeva, I. G.; Erdogan, F.; Amiraliyev, G. M.
    This work deals with a singularly perturbed initial value problem fora quasi-linear second-order delay differential equation. An exponentially fitted difference scheme is constructed, in an equidistant mesh, which gives first-order uniform convergence in the discrete maximum norm. Numerical results are also presented. (C) 2010 Elsevier Ltd. All rights reserved.
  • [ X ]
    Öğe
    Explicit Finite Difference Methods for the Delay Pseudoparabolic Equations
    (Hindawi Publishing Corporation, 2014) Amirali, I.; Amiraliyev, G. M.; Cakir, M.; Cimen, E.
    Finite difference technique is applied to numerical solution of the initial-boundary value problem for the semilinear delay Sobolev or pseudoparabolic equation. By the method of integral identities two-level difference scheme is constructed. For the time integration the implicit rule is being used. Based on the method of energy estimates the fully discrete scheme is shown to be absolutely stable and convergent of order two in space and of order one in time. The error estimates are obtained in the discrete norm. Some numerical results confirming the expected behavior of the method are shown.
  • [ X ]
    Öğe
    Uniform difference method for parameterized singularly perturbed delay differential equations
    (Springer, 2009) Amiraliyeva, I. G.; Amiraliyev, G. M.
    This paper deals with the singularly perturbed initial value problem for quasilinear first-order delay differential equation depending on a parameter. A numerical method is constructed for this problem which involves an appropriate piecewise-uniform meshes on each time subinterval. The difference scheme is shown to converge to the continuous solution uniformly with respect to the perturbation parameter. Some numerical experiments illustrate in practice the result of convergence proved theoretically.

| Sinop Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Kütüphane ve Dokümantasyon Daire Başkanlığı, Sinop, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim