Yazar "Agrawal, Chetan" seçeneğine göre listele
Listeleniyor 1 - 4 / 4
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Application of Environmentally-friendly Cooling/Lubrication Strategies for Turning Magnesium/SiC MMCs(Springer, 2021) Khanna, Navneet; Shah, Prassan; Suri, Narendra Mohan; Agrawal, Chetan; Khatkar, Sandeep K.; Pusavec, Franci; Sarikaya, MuratThe material having high strength to weight ratio is constantly in high demand for automotive industries to increase fuel efficiency. With this view, AZ91/5SiC (an Mg-based Particulate Metal Matrix Composites (PMMCs)) is fabricated using an in-house developed stir casting setup and characterized through Field Emission Scanning Electron Microscopy (FESEM) with Energy-Dispersive X-ray Spectroscopy (EDS) analysis. However, the machinability of PMMCs is found to be lower due to the existence of harder ceramic constituents and appropriate cutting fluid strategies are required to follow to combat this situation. But limited studies are available identifying the impact of recently developed sustainable cooling and lubrication techniques on machining performance when PMMCs is turned. To fill this bridge, customized setups of minimum quantity lubrication (MQL), cryogenic and CryoMQL machining with LN(2)have been developed to provide eco-friendly cutting fluid approaches to turn AZ91/5SiC. The cutting force, energy consumption, surface roughness (R-a) and chip breakability index (C-in) have been analyzed for MQL, cryogenic and CryoMQL techniques with variation in process parameters. By considering the average value of all turning tests, 64.65% and 40.39%; and 11.49% and 7.13% higher value of cutting force and energy consumption is found correspondingly for cryogenic and CryoMQL machining respectively as compared to MQL technique respectively. Overall, 25.59% and 18.35% lower values ofR(a)have been observed for CryoMQL technique as compared with MQL and cryogenic machining respectively. The powder type chips with comparable higher values ofC(in)have been found in all three cooling and lubrication techniques.Öğe Comprehensive analysis of tool wear, tool life, surface roughness, costing and carbon emissions in turning Ti-6Al-4V titanium alloy: Cryogenic versus wet machining(Elsevier Sci Ltd, 2021) Agrawal, Chetan; Wadhwa, Jwalant; Pitroda, Anjali; Pruncu, Catalin Iulian; Sarikaya, Murat; Khanna, NavneetCryogenic machining has emerged as a sustainable technique that reflects in terms of reduced environmental effects, superior part quality, and lesser resource consumption. However, further exploration of machinability and sustainability improvements using this technique will help the manufacturing industry to adopt it as an alternative to conventional techniques. In this government-supported work, the machinability of Ti-6Al-4V is assessed at five different cutting speeds (70, 80, 90, 100, and 110 m/min) under wet and cryogenic environments. This article presents a detailed analysis of tool wear (flank and crater wear), power consumption, and surface roughness to seek improvements in machinability of Ti-6Al-4V using cryogenic turning in comparison to wet turning. To investigate the sustainability aspects of cryogenic and wet turning, results are also analyzed in terms of total machining cost and carbon emissions that remain relatively less explored in literature. The results show higher crater wear under a wet environment relative to the cryogenic environment at most of the cutting speeds. However, tool life is improved (by up to 125%) using cryogenic turning in comparison to wet turning exclusively at higher cutting speeds (100 and 110 m/min). Reduced power consumption (by up to 23.4%) and surface roughness (by up to 22.1%) are obtained using cryogenic turning than wet turning at all cutting speeds. It is noted that machining cost is reduced (by up to 27%) using cryogenic turning in comparison to wet turning, especially at higher cutting speeds. Cryogenic turning is proved to be better in terms of environmental aspects as it enables a reduction in overall carbon emissions (by up to 22%) at higher cutting speeds.Öğe Experimental investigation on the effect of dry and multi-jet cryogenic cooling on the machinability and hole accuracy of CFRP composites(Elsevier, 2022) Agrawal, Chetan; Khanna, Navneet; Pimenov, Danil Yu; Wojciechowski, Szymon; Giasin, Khaled; Sarikaya, Murat; Yildirim, Cagri VakkasIn this work, the drilling performance of carbon fibre reinforced plastic (CFRP) composites is analysed in terms of thrust force (F-n), torque (M-z), specific cutting energy (SCE), delamination factor (F-d), and hole quality under dry and cryogenic cooling conditions. An in-house developed multi-jet liquid nitrogen (LN2) delivery setup is used for experimental trials. This LN2 delivery system is retrofitted to an existing machine tool to enable the movement of jets along the axis of the spindle for better reachability of LN2 to the cutting zone during the drilling operation. Experiments are conducted using the full factorial technique considering four levels of spindle rotational speed (N), four levels of feed rate (f(r)), and two cutting conditions i.e., dry and cryogenic cooling. Results show increased F-n up to 35% and decreased M-z up to 24.46% using cryogenic drilling as compared to dry drilling. Moreover, SCE is reduced up to 35% using cryogenic drilling than in dry drilling. Entry F-d is decreased up to 21.55% under cryogenic drilling as compared to dry drilling. At higher N input and lower f(r), the exit F-d can be reduced by up to 9% using cryogenic drilling as compared with dry drilling. In terms of hole quality, cylindricity (CYL) decreased by up to 42.69%, lower deviation in average hole size, and decreased average surface roughness (R-a) up to 20% when using cryogenic drilling. The results show that using the multi-jet cryogenic cooling system provides enhanced composite machinability and sustainability for industrial use. (c) 2022 The Author(s). Published by Elsevier B.V.Öğe Review on design and development of cryogenic machining setups for heat resistant alloys and composites(Elsevier Sci Ltd, 2021) Khanna, Navneet; Agrawal, Chetan; Pimenov, Danil Yu; Singla, Anil Kumar; Machado, Alisson Rocha; da Silva, Leonardo Rosa Ribeiro; Gupta, Munish KumarCryogenic machining is becoming a sustainable choice due to its extraordinary performance (such as non-toxic and environmentally friendly) superiority to other traditional coolants and lubricants to produce products with superior quality. This paper also critically reviews improvements in designing the cryogenic delivery setup used by researchers for machining low machinability materials like titanium alloys, nickel alloys, ferrous alloys, composites, and other difficult-to-cut materials. It also briefs the economic and sustainable perspective of this state-of-art technology. The aim is to maximize the usage of sustainable cryogenic and hybrid machining technologies in the global manufacturing industry by highlighting their advantages. An overview of in-house developed cryogenic and hybrid machining techniques is presented. Various challenges and future needs related to cryogenic and hybrid-machining techniques are also discussed in the articles. Although remarkable results are obtained with the available literature's delivery methods, there is still no consensus regarding the best cryogenic delivery methods for machining the aforementioned materials. In addition, further hybridization of cryogenic delivery techniques with near dry machining techniques such as minimum quantity lubrication (MQL), electrostatic-MQL (EMQL), and nanofluid based MQL (nMQL) can be beneficial for machinability improvements of difficult-to-machine materials.