Yazar "Agar, O." seçeneğine göre listele
Listeleniyor 1 - 6 / 6
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe A comparative neutron and gamma-ray radiation shielding investigation of molybdenum and boron filled polymer composites(Pergamon-Elsevier Science Ltd, 2023) Ogul, H.; Agar, O.; Bulut, F.; Kacal, M. R.; Dilsiz, K.; Polat, H.; Akman, F.This work presents a detailed radiation shielding study for polymer composites filled with Boron and Molyb-denum additives. The chosen novel polymer composites were produced at different percentages of the additive materials to provide a proper evaluation of their neutron and gamma-ray attenuation abilities. The effect of additive particle size on the shielding characteristics was further investigated. On the gamma-ray side, simula-tion, theoretical and experimental evaluations were performed in a wide range of photon energies varying from 59.5 keV to 1332.5 keV with help of MC simulations (GEANT4 and FLUKA), WinXCOM code, a High Purity Germanium Detector, respectively. A remarkable consistency was reported between them. On the neutron shielding side, the prepared samples produced with nano and micron particle size additives were additionally examined by providing fast neutron removal cross-section (sigma R) and the simulated neutron transmissions through the prepared samples. The samples filled with nano sized particles show better shielding capability than the one filled with micron sized particles. In other words, a new polymer shielding material that does not contain toxic content is introduced: the sample codded N-B0Mo50 exhibits superior radiation attenuation.Öğe Gamma and Neutron Shielding Parameters of Polyester-based composites reinforced with boron and tin nanopowders(Pergamon-Elsevier Science Ltd, 2022) Ogul, H.; Polat, H.; Akman, F.; Kacal, M. R.; Dilsiz, K.; Bulut, F.; Agar, O.The usage of composites as the shielding materials are highly recommended since they could be used in order to attenuate the undesired radiation with unique properties and advantages in the areas where the radiation is prevalent. In this context, not only are their radiation shielding properties important but also their flexibility, durability and low cost. Due to the mentioned superior characteristics, the polyester based composites are among the most preferred materials. With the aim of creating unique and novel radiation shielding materials, this study investigates gamma and neutron shielding capabilities of the polyester composites reinforced with Boron and Tin nanopowders at different proportions (0-50%, 10-40%, 20-30%, 30-20% and 40-10%, 50-0%). The gamma shielding abilities of the prepared polyester composite materials were evaluated using an HPGe detector system, WinXCOM computer program and different simulation tools (FLUKA and GEANT4) at the energies varying from 59.5 to 1332.5 keV. The experimental, theoretical and simulation results showed remarkable agreement between each other, and the addition of Sn enhances the gamma attenuation performance of the chosen polyester composite materials. In addition to gamma analysis results, neutron shielding properties of the proposed com-posites are further determined. On this purpose, the transmitted neutron numbers through the samples (as functions of neutron energy and the sample thickness) and effective neutron removal cross sections were eval-uated. The neutron shielding performance of the samples showed that the prepared composites could be alter-native materials to the existing neutron shields in the literature.Öğe Gamma attenuation characteristics of CdTe-Doped polyester composites(Pergamon-Elsevier Science Ltd, 2021) Akman, F.; Ogul, H.; Kacal, M. R.; Polat, H.; Dilsiz, K.; Agar, O.Polyester is strong and durable material and tends to retain its shape, thus polyester composites have become highly preferred option in high-tech applications. This motivates the usage of polyester composites in the production of radiation shielding materials as well. In present study, gamma ray shielding properties of polyester composite reinforced with different proportions of Cadmium Telluride (5%, 10%, 15% and 20%) have been investigated theoretically and experimentally. The experiments were performed with the use of HPGe detector in a wide range of photon energies varying from 59.5 to 1408.0 keV while XCOM computer program was computed in the same photon energy range to obtain theoretical results and to verify the experimental outcomes. Remarkable radiation protection efficiency was obtained with additive material of Cadmium Telluride, and the radiation protection efficiency was found to be increased with the increase of additive material amount. Negligible discrepancies between experimental and theoretical results were also observed.Öğe Gamma, charged particle and neutron radiation shielding capacities of ternary composites having polyester/barite/tungsten boride(Pergamon-Elsevier Science Ltd, 2023) Akman, F.; Ozdogan, H.; Kilicoglu, O.; Ogul, H.; Agar, O.; Kacal, M. R.; Polat, H.The presented work investigates the photon, charged particle and neutron radiation shielding performances of polyester-based composites filled with barite and/or tungsten boride by using experimental, theoretical, and Monte Carlo simulation techniques. The amount of barite/tungsten boride varying from 0 wt% to 50 wt% in the material and polyester resin were exploited as filler and base materials, respectively. Experimental evaluation of BaWB composites has been performed with help of an HPGe detector based gamma spectrometer as well as 22Na, 133Ba, 137Cs and 60Co radioactive point sources with energies in the range of 276.4-1332.5 keV. The experimental data were compared to those theoretically calculated in WinXCOM as well as Monte Carlo (MC) simulations, i.e., MCNP6, GEANT4 and FLUKA codes. The obtained mass attenuation coefficients for the produced composites were in good agreement with the results of MC simulations and WinXCOM software. Comparing to the other polymer composite samples, the sample with the maximum tungsten boride weight percentage has the best radiation shielding property because of having the highest attenuation coefficients and lowest absorption thicknesses.Öğe Nuclear radiation shielding performance of borosilicate glasses: Numerical simulations and theoretical analyses(Pergamon-Elsevier Science Ltd, 2023) Kilicoglu, O.; Akman, F.; Ogul, H.; Agar, O.; Kara, U.The photon shielding performances of five different borosilicate-based glasses were investigated in this study using the FLUKA, GEANT4 and MATLAB codes, as well as the XCOM program, at photon energies ranging from 0.03 to 15 MeV. In this context, dependencies of the photon attenuation features with the variation of the photon energy and the chemical compositions have been carefully evaluated with Monte Carlo simulation and theo-retical evaluation tools. The mass attenuation coefficient values and effective atomic numbers obtained for BaO-doped G5 glasses are found to be higher than those derived for G1-G4 samples. In other words, the Zeff results showed that high Z-elements such as Ba in a suitable amount should be inserted into the glass composition in order to improve the photon attenuation capability of the borosilicate glasses. The HVLs, TVLs, and MFPs of the studied borosilicate glasses are determined further, and the gamma shielding characteristics of the analyzed samples are found to be associated to the density of the glass, implying that high-density glass can be used for high-level attenuation performance. The exposure buildup factor (EBF) values have been further estimated via the G-P fitting approach. The results of such investigations, according to the work given, may be valuable in designing and fabricating new borosilicate-based glasses, which can then shield against potential radiation damage to environmental health.Öğe Study on gamma radiation attenuation and non-ionizing shielding effectiveness of niobium-reinforced novel polymer composite(Korean Nuclear Soc, 2022) Akman, Ferdi; Ogul, H.; Ozkan, I; Kacal, M. R.; Agar, O.; Polat, H.; Dilsiz, K.Advanced radiation applications have been widely used and extended to many fields. As a result of this fact, choosing an appropriate shielding material based on the radiation application has become vital. In this regard, the integration of elements into polymer composites has been investigated and contributed to the quantity and quality of radiation shielding materials. This study reports photon attenuation parameters and electromagnetic shielding effectiveness of a novel polymer composite prepared with a matrix reinforced with three different proportions (5,10, and 15 wt%) of niobium content. Addition of Nb dopant improves both photon attenuation and electromagnetic shielding effectiveness for the investigated composites. Therefore, Nb(15%) polymer composite with highest concentration has been found to be the best absorber for ionizing and non-ionizing radiations. Consequently, the performed analyzes provide evidences that the prepared Nb-reinforced polymer composite could be effectively used as photon radiation attenuator and electromagnetic shielding material. (c) 2021 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).