Öncel, Levent2025-03-232025-03-2320202536-43832564-7873https://hdl.handle.net/11486/2383Bu çalismada, bir demir bazli alasim olan ferromolibdenin (FeMo) üretimi metalotermik reaksiyon ile gerçeklestirilmistir. Bu metodun seçilme nedenleri maliyetinin düsük olmasi, prosesin kisa süre içinde tamamlanmasi ve enerji ihtiyacinin çok düsük olmasidir. Deneysel çalismalar öncesinde FactSage ve HSC yazilimlari kullanilarak termokimyasal simülasyonlar gerçeklestirilmistir. Deneylerde baslangiç malzemesi olarak bir atik malzeme olan ve kütlece %70 demir içeren hadde tufali kullanilmistir. MoO3 molibden kaynagi olarak, alüminyum ise indirgeyici olarak kullanilmistir. Deneyler sonucunda üretilmis olan numuneler Atomik Absorbsiyon Spektrometresi (AAS), X-Isini Floresans Spektrometresi (XRF) ve sertlik testleri (micro-Vickers) ile karakterize edilmistir. Deneysel çalismalarda öncelikle indirgeyici olarak kullanilan alüminyumun stokiyometrisinin FeMo verimi üzerindeki etkisi arastirilmistir. XRF sonuçlarina göre, %105 alüminyum stokiyometrisine sahip olan numune hedef alasima en yakin sonucu vermistir. Bu numunede elde edilen Fe verimi %95,16, Mo verimi ise %97,21 olmustur. Agirlik degisiminin Fe ve Mo verimleri üzerindeki etkisi %105 alüminyum stokiyometrisine sahip olan numuneler kullanilarak arastirilmistir. Hedef alasima en yakin sonucun 75 gram agirligindaki sarj ile elde edildigi görülmüstür. Bu numunedeki Fe verimi %99,10, Mo verimi ise 97,98 olmustur. Bu numunede elde edilen Fe ve Mo verimleri bütün deneylerde elde edilen en yüksek verim degerleridir. Numunelere yapilan sertlik testlerinde 678 HV10 ve 767 HV10 arasinda degerler elde edilmistir. En yüksek sertlik degeri %100 stokiyometrik alüminyum içeren numune ile elde edilmistir. Numunelerin kimyasal yapilarinin birbirine yakin olmasi sebebiyle birbirine yakin sertlik degerlerinin elde edildigi sonucuna varilmistir.In this study, the production of ferromolybdenum (FeMo), which is an iron-based alloy, was carried out through the metallothermic reaction. This method was chosen due to its low cost, short process time and minimum energy need. Before the experiments, FactSage and HSC software were used for thermochemical modeling. Mill scale was used as a starting material in the experimental studies. Mill scale is waste material and it contains 70% iron by mass. MoO3 was used as the molybdenum source and aluminum was used as the reducing agent. Produced samples were characterized by Atomic Adsorption Spectrometry (AAS), X-Ray Fluorescence (XRF) and hardness tests (micro-Vickers). Initially, the effect of aluminum stoichiometry, which was used as a reductant, on FeMo efficiency was investigated. The closest result to the target alloy was achieved with the sample having 105% aluminum stoichiometry. Fe and Mo efficiencies were 95.16% and 97.21%, respectively. The effects of weight change on Fe and Mo efficiencies were investigated by using samples having 105% aluminum stoichiometry. It was observed that the closest result to the target alloy was achieved with a 75 g charge. Fe and Mo efficiencies were 99.10% and 97.98%, respectively. These were the highest efficiency values obtained in all experiments. The hardness values of samples were between 678 HV10 and 767 HV10. The highest hardness value was obtained in the alloy containing 100% stoichiometric aluminum. It was concluded that there was no significant difference in the hardness values of the samples due to the similarity in their chemical structures.eninfo:eu-repo/semantics/openAccessHadde TufaliFerromolibdenFeMoAlüminotermik RedüksiyonGeri DönüsümAlüminotermik Yöntem Yoluyla Tufalden Ferromolibden ÜretimiProduction of Ferromolybdenum from Mill Scale via Aluminothermic ProcessArticle51647610.33484/sinopfbd.724720https://doi.org/10.33484/sinopfbd.724720