Dirik, FadimeDemirci, Kamil2014-08-112014-08-112010Dirik, F., Demirci, K. "Modified double Szasz-Mirakjan operators preserving x2 + y2". Mathematical Communications. Vol. 15, No. 1, pp. 177-188 (2010).https://hdl.handle.net/11486/270In this paper, we introduce a modifcation of the Szasz-Mirakjan type operators of two variables which preserve f0 (x; y) = 1 and f3 (x; y) = x2 + y2: We prove that this type of operators enables a better error estimation on the interval [0;1) £ [0;1) than the classical Szasz-Mirakjan type operators of two variables. Moreover, we prove a Voronovskaya-type theorem and some differential properties for derivatives of these modified operators. Finally, we also study statistical convergence of the sequence of modified Szasz-Mirakjan type operators. AMS subject classifications: 41A25, 41A36enSzasz-Mirakjan type operatorsA-statistical convergenceThe Korovkin-type approximation theoremModulus of continuityModified double Szasz-Mirakjan operators preserving x2 + y2ArticleWOS:000278601800015