Dirik, FadimeDemirci, Kamil2025-03-232025-03-2320110025-51652406-0682https://hdl.handle.net/11486/7444This paper deals with a modification of the classical Szasz-Mirakjan type operators of two variables. It introduces a new sequence of non-polynomial linear operators which hold fixed the polynomials x(2)+ alpha x and y(2) + beta y with alpha, beta is an element of [0, infinity) and we study the convergence properties of the new approximation process. Also, we compare it with Szasz-Mirakjan type operators and show an improvement of the error of convergence in [0, 1] x [0, 1]. Finally, we study statistical convergence of this modification.eninfo:eu-repo/semantics/closedAccessSzasz-Mirakjan type operatorsA-statistical convergence for double sequencesKorovkin-type approximation theoremmodulus of contiunitySZASZ-MIRAKJAN TYPE OPERATORS OF TWO VARIABLES PROVIDING A BETTER ESTIMATION ON [0,1] x [0, 1]Article6315966Q3WOS:000436931200008N/A