Unal, CihanAydin, Ismail2025-03-232025-03-2320211747-69331747-6941https://doi.org/10.1080/17476933.2020.1781831https://hdl.handle.net/11486/5710In this study, we define double weighted variable exponent Sobolev spaces W-1,W-q(.),W-p(.) (Omega, theta(0),theta) with respect to two different weight functions. Also, we investigate the basic properties of this spaces. Moreover, we discuss the existence of weak solutions for weighted Dirichlet problem of p(center dot)-Laplacian equation -div(theta(x) vertical bar del f vertical bar p(x)(-2)del f) = theta(0)(x) vertical bar f vertical bar(q(x)-2) f x is an element of Omega f = 0 x is an element of partial derivative Omega under some conditions of compact embedding involving the double weighted variable exponent Sobolev spaces.eninfo:eu-repo/semantics/openAccessWeak solutioncompact embeddingp (center dot)-Laplacianweighted variable exponent Sobolev spacesCompact embeddings of weighted variable exponent Sobolev spaces and existence of solutions for weighted p(•)-LaplacianArticle66101755177310.1080/17476933.2020.17818312-s2.0-85087510561Q2WOS:000549544300001Q3