Amiraliyev, Gabil M.Cimen, Erkan2025-03-232025-03-2320100096-3003https://doi.org/10.1016/j.amc.2010.03.080https://hdl.handle.net/11486/6719This paper deals with the singularly perturbed boundary value problem for a linear second-order delay differential equation. For the numerical solution of this problem, we use an exponentially fitted difference scheme on a uniform mesh which is accomplished by the method of integral identities with the use of exponential basis functions and interpolating quadrature rules with weight and remainder term in integral form. It is shown that one gets first order convergence in the discrete maximum norm, independently of the perturbation parameter. Numerical results are presented which illustrate the theoretical results. (C) 2010 Elsevier Inc. All rights reserved.eninfo:eu-repo/semantics/closedAccessSingular perturbationBoundary value problemFitted difference methodDelay differential equationNumerical method for a singularly perturbed convection-diffusion problem with delayArticle21682351235910.1016/j.amc.2010.03.0802-s2.0-77953135860Q1WOS:000278151900015Q1