Aydin, IsmailUnal, Cihan2025-03-232025-03-2320230035-50381827-3491https://doi.org/10.1007/s11587-021-00621-0https://hdl.handle.net/11486/6827By applying Mountain Pass Lemma, Ekeland's variational principle and Fountain Theorem, we prove the existence and multiplicity of solutions for the following Robin problem {-div(a(x) vertical bar del u vertical bar(p(x)-2) del u) =lambda b(x)vertical bar u vertical bar(q(x)-2) u, x is an element of Omega a(x) vertical bar del u vertical bar(p(x)-2) partial derivative u/partial derivative u + beta(x)vertical bar u vertical bar(p(x)-2) u = 0, x is an element of partial derivative Omega, under some appropriate conditions in the space W-a,b(1, p(.)) (Omega).eninfo:eu-repo/semantics/closedAccessWeak solutionp(.)-LaplacianMountain Pass LemmaFountain TheoremEkeland variational principleExistence and multiplicity of weak solutions for eigenvalue Robin problem with weighted p(.)-LaplacianArticle72251152810.1007/s11587-021-00621-02-s2.0-85111278226Q1WOS:000679002900002Q1